OBSERVATIONS & RECOMMENDATIONS

After reviewing data collected from **BLAISDELL LAKE**, **SUTTON**, the program coordinators have made the following observations and recommendations:

Thank you for your continued hard work sampling the lake this season! Your monitoring group sampled **five** times this season and has done so for many years! As you know, with multiple sampling events each season, we will be able to more accurately detect changes in water quality. Keep up the good work!

As part of the state's lake survey program, DES biologists performed a comprehensive lake survey on **BLAISDELL LAKE** in **August.** Publicly-owned recreational lakes in the state are surveyed approximately every ten to fifteen years. In addition to the tests normally carried out by VLAP, biologists tested for certain indicator metals and nitrogen, created a map of the lake bottom contours (referred to as a bathymetric map), and mapped the abundance and distribution of the aquatic plants along the shoreline. DES biologists will also sample the lake/pond once during the Winter of 2005-2006. Some data from this lake survey have been included in this report and has been added to the historical database for your lake/pond. If you would like a complete copy of the raw data from the lake survey, please contact the DES Limnology Center at (603) 271-3414 or (603) 271- 2658. A final report should be available in 2007 and a copy will be available at any state library.

A Weed Watcher training was conducted at **BLAISDELL LAKE** in 2005. Volunteers were trained to survey the lake once a month from **June** through **September**. To survey, volunteers slowly boat, or even snorkel, around the perimeter of the lake and any islands it may contain. Using the materials provided in the Weed Watchers Kit, volunteers look for any species that are of suspicion. After a trip or two around the lake, volunteers will have a good knowledge of its plant community and will immediately notice even the most subtle changes. If a suspicious plant is found, the volunteers will send a specimen to DES for identification. If the plant specimen is an exotic, a biologist will visit the site to determine the extent of the problem and to formulate a management plan to control

the nuisance infestation. Remember that early detection is the key to controlling the spread of exotic plants. Keep up the good work!

FIGURE INTERPRETATION

Figure 1 and Table 1: The graphs in Figure 1 (Appendix A) show the historical and current year chlorophyll-a concentration in the water column. Table 1 (Appendix B) lists the maximum, minimum, and mean concentration for each sampling season that the lake has been monitored through the program.

Chlorophyll-a, a pigment found in plants, is an indicator of the algal abundance. Because algae are usually microscopic plants that contain chlorophyll-a, and are naturally found in lake ecosystems, the chlorophyll-a concentration measured in the water gives an estimation of the algal concentration or lake productivity. The median summer chlorophyll-a concentration for New Hampshire's lakes and ponds is 4.58 mg/m³.

The current year data (the top graph) show that the chlorophyll-a concentration *increased slightly* from May to June, *increased greatly from* June to July, and then *decreased steadily* from July to September. The chlorophyll-a concentration on the May, June, August and September sampling events was *less than* the state median and similar lake median. On the July sampling event the chlorophyll concentration was *greater than* the state median and similar lake median (refer to Appendix F for more information about the similar lake median).

The historical data (the bottom graph) show that the 2005 chlorophyll-a mean is *less than* the state median and the similar lake median.

Overall, visual inspection of the historical data trend line (the bottom graph) shows a **variable** in-lake chlorophyll-a trend since monitoring began. Specifically, the mean concentration has **fluctuated between** approximately 1.6 and 7.1 mg/m³ since 1986.

In the 2006 annual report, since your group will have sampled the chlorophyll-a concentration at the deep spot for at least 10 consecutive years, we will conduct a statistical analysis of the historic data to determine if there has been a significant change in the annual mean since monitoring began.

While algae are naturally present in all lakes, an excessive or increasing amount of any type is not welcomed. In freshwater lakes, phosphorus is the nutrient that algae depend upon for growth. Algal concentrations may increase with an increase in nonpoint sources of phosphorus loading from the watershed, or in-lake sources of phosphorus loading (such as phosphorus releases from the sediments). Therefore, it is extremely important for volunteer monitors to continually educate residents about how activities within the watershed can affect phosphorus loading and lake quality.

Figure 2 and Table 3: The graphs in Figure 2 (Appendix A) show historical and current year data for lake transparency. Table 3 (Appendix B) lists the maximum, minimum and mean transparency data for each sampling season that the lake has been monitored through the program.

Volunteer monitors use the Secchi-disk, a 20 cm disk with alternating black and white quadrants, to measure water clarity (how far a person can see into the water). Transparency, a measure of water clarity, can be affected by the amount of algae and sediment from erosion, as well as the natural colors of the water. The median summer transparency for New Hampshire's lakes and ponds is 3.2 meters.

The current year data (the top graph) show that the in-lake transparency fluctuated between **4.75** and **6 meters** from **May** through **September**.

The historical data (the bottom graph) show that the 2005 mean transparency is *greater than* the state median and the similar lake median.

Overall, visual inspection of the historical data trend line (the bottom graph) shows a **relatively stable** transparency trend since monitoring began. Specifically, the mean transparency has **remained between approximately 4.7 and 6.3 meters** since **1986.**

As previously discussed, since your group will have sampled the transparency at the deep spot for at least 10 consecutive years, the 2006 annual report will include a statistical analysis of the historic data to determine if there has been a significant change in the annual mean since monitoring began.

Typically, high intensity rainfall causes erosion of sediments into lakes and streams, thus decreasing clarity. Efforts should continually be made to stabilize stream banks, lake shorelines, disturbed soils within the watershed, and especially dirt roads located

immediately adjacent to the edge of tributaries and the lake. Guides to Best Management Practices designed to reduce, and possibly even eliminate, nonpoint source pollutants, such as sediment loading, are available from DES upon request.

Figure 3 and Table 8: The graphs in Figure 3 (Appendix A) show the amount of phosphorus in the epilimnion (the upper layer) and the hypolimnion (the lower layer); the inset graphs show current year data. Table 8 (Appendix B) lists the annual maximum, minimum, and median concentration for each deep spot layer and each tributary since the lake has joined the program.

Phosphorus is the limiting nutrient for plant and algae growth in New Hampshire's freshwater lakes and ponds. Too much phosphorus in a lake can lead to increases in plant and algal growth over time. The median summer total phosphorus concentration in the epilimnion (upper layer) of New Hampshire's lakes and ponds is 12 ug/L. The median summer phosphorus concentration in the hypolimnion (lower layer) is 14 ug/L.

The current year data for the epilimnion (the top inset graph) show that the phosphorus concentration **remained stable** from **May** to **August** and then **increased slightly** from **August** to **September**. The phosphorus concentration on **each sampling event** was **less than** the state median.

The historical data show that the 2005 mean epilimnetic phosphorus concentration is *approximately equal to* the similar lake median.

The current year data for the hypolimnion (the bottom inset graph) show that the phosphorus concentration **decreased** from **May** to **June** and then **increased steadily** from **June** through **September**. The phosphorus concentration on the **May**, **August** and **September** sampling events was **slightly greater than** the state median, on the **June** sampling event was **less than** the state median, and on the **July** sampling event was **slightly less than** the state median.

The turbidity of the hypolimnion (lower layer) sample was **elevated** (8.86 NTUs) on the August sampling event. This suggests that the lake bottom may have been disturbed by the anchor or by the Kemmerer Bottle while sampling and/or that the lake bottom is covered by a thick organic layer of sediment which is easily disturbed. When the lake bottom is disturbed, sediment, which typically contains attached phosphorus, is released into the water column. When collecting the hypolimnion sample, make sure that there is no sediment in the Kemmerer Bottle before filling the sample bottles.

The historical data show that the 2005 mean hypolimnetic phosphorus concentration is **slightly less than** the state median and is **slightly greater than** the similar lake median (refer to Appendix F for more information about the similar lake median).

Overall, visual inspection of the historical data trend line for the epilimnion shows a *relatively stable* phosphorus trend. Specifically, the mean annual concentration has *remained between* approximately 4 and 9 ug/L since monitoring began in 1989.

Overall, visual inspection of the historical data trend line for the hypolimnion shows a *variable* phosphorus trend since monitoring began. Specifically, the mean annual concentration has *fluctuated between approximately 8 and 26 ug/L* since monitoring began.

One of the most important approaches to reducing phosphorus loading to a waterbody is to continually educate watershed residents about its sources and how excessive amounts can adversely impact the ecology and value of lakes and ponds. Phosphorus sources within a lake or pond's watershed typically include septic systems, animal waste, lawn fertilizer, road and construction erosion, and natural wetlands.

TABLE INTERPRETATION

> Table 2: Phytoplankton

Table 2 (Appendix B) lists the current and historical phytoplankton species observed in the lake. Specifically, this table lists the three most dominant phytoplankton species observed in the sample and their relative abundance in the sample.

The dominant phytoplankton species observed in the **July** sample were **Chrysosphaerella** (golden-brown), **Rhizosolenia** (diatom), and **Dinobryon** (golden-brown).

Phytoplankton populations undergo a natural succession during the growing season (Please refer to the "Biological Monitoring Parameters" section of this report for a more detailed explanation regarding seasonal plankton succession). Diatoms and golden-brown algae are typical in New Hampshire's less productive lakes and ponds.

> Table 4: pH

Table 4 (Appendix B) presents the in-lake and tributary current year and historical pH data.

pH is measured on a logarithmic scale of 0 (acidic) to 14 (basic). pH is important to the survival and reproduction of fish and other aquatic life. A pH below 6.0 limits the growth and reproduction of fish. A pH between 6.0 and 7.0 is ideal for fish. The median pH value for the epilimnion (upper layer) in New Hampshire's lakes and ponds is **6.6**, which indicates that the surface waters in the state are slightly acidic. For a more detailed explanation regarding pH, please refer to the "Chemical Monitoring Parameters" section of this report.

The mean pH at the deep spot this season ranged from **6.11** in the hypolimnion to **6.87** in the epilimnion, which means that the water is **slightly acidic.**

It is important to point out that the pH in the hypolimnion (lower layer) was *lower (more acidic)* than in the epilimnion (upper layer). This increase in acidity near the lake bottom is likely due the decomposition of organic matter and the release of acidic by-products into the water column.

Due to the presence of granite bedrock in the state and acid deposition (from snowmelt, rainfall, and atmospheric particulates) in New Hampshire, there is not much that can be done to effectively increase lake/pond pH.

> Table 5: Acid Neutralizing Capacity

Table 5 (Appendix B) presents the current year and historical epilimnetic ANC for each year the lake/pond has been monitored through VLAP.

Buffering capacity (ANC) describes the ability of a solution to resist changes in pH by neutralizing the acidic input. The median ANC value for New Hampshire's lakes and ponds is **4.9 mg/L**, which indicates that many lakes and ponds in the state are at least "moderately vulnerable" to acidic inputs. For a more detailed explanation, please refer to the "Chemical Monitoring Parameters" section of this report.

The mean Acid Neutralizing Capacity (ANC) of the epilimnion (the upper layer) was **7.7 mg/L** this season, which is **greater than** the state median. In addition, this indicates that the lake is **moderately vulnerable** to acidic inputs (such as acid precipitation).

> Table 6: Conductivity

Table 6 (Appendix B) presents the current and historical conductivity values for tributaries and in-lake data. Conductivity is the numerical expression of the ability of water to carry an electric current (which is determined by the number of negatively charged ions from metals, salts, and minerals in the water column). The median conductivity value for New Hampshire's lakes and ponds is **40.0 uMhos/cm**. For a more detailed explanation, please refer to the "Chemical Monitoring Parameters" section of this report.

The mean annual conductivity in the epilimnion at the deep spot this season was **74.61 uMhos/cm**, which is **greater than** the state median.

The conductivity has *increased* in the lake and tributaries since monitoring began. Typically, sources of increased conductivity are due to human activity. These activities include septic systems, agricultural runoff, and road runoff (which contains road salt during the spring snow melt). New development in the watershed can alter runoff patterns and expose new soil and bedrock areas, which could contribute to increasing conductivity. In addition, natural sources, such as iron and manganese deposits in bedrock, can influence conductivity.

We recommend that your monitoring group conduct a stream survey and storm event sampling along **Russell Inlet** so that we can determine potential sources of conductivity to the lake.

For a detailed explanation on how to conduct rain event sampling and stream surveys, please refer to the 2002 VLAP Annual Report "Special Topic Article" or contact the VLAP Coordinator.

We also recommend that your monitoring group conduct a shoreline conductivity survey of the lake to help pinpoint the sources of **elevated** conductivity.

To learn how to conduct a shoreline or tributary conductivity survey, please refer to the 2004 "Special Topic Article" or contact the VLAP Coordinator.

It is possible that de-icing materials applied to nearby roadways, including Route 114, during the winter months may be influencing the conductivity in the lake. In New Hampshire, the most commonly used de-icing material is salt (sodium chloride).

During the August comprehensive lake survey, DES biologists sampled the **epilimnion** (upper layer) for chloride. For more information regarding the chloride results, refer to the Table 13

explanation.

> Table 8: Total Phosphorus

Table 8 (Appendix B) presents the current year and historical total phosphorus data for in-lake and tributary stations. Phosphorus is the nutrient that limits the algae's ability to grow and reproduce. Please refer to the "Chemical Monitoring Parameters" section of this report for a more detailed explanation.

The total phosphorus concentration was *elevated* (ranging from **35** to **39 ug/L**) in the **Brown Inlet** samples collected in **June**, **July**, and **August**. The turbidity of these samples was not particularly elevated (ranging from **1.4** to **1.57 NTUs**). This station has had a history of *fluctuating* total phosphorus concentrations. We recommend that your monitoring group conduct a stream survey and storm event sampling along this inlet so that we can determine what may be causing the increase.

For a detailed explanation on how to conduct rain event sampling, please refer to the 2002 VLAP Annual Report "Special Topic Article" or contact the VLAP Coordinator.

> Table 9 and Table 10: Dissolved Oxygen and Temperature Data

Table 9 (Appendix B) shows the dissolved oxygen/temperature profile(s) for the 2005 sampling season. Table 10 (Appendix B) shows the historical and current year dissolved oxygen concentration in the hypolimnion (lower layer). The presence of dissolved oxygen is vital to fish and amphibians in the water column and also to bottom-dwelling organisms. Please refer to the "Chemical Monitoring Parameters" section of this report for a more detailed explanation.

The dissolved oxygen concentration was **lower in the hypolimnion** (lower layer) than in the epilimnion (upper layer) at the deep spot of the lake on the **July** sampling event. As stratified lakes age, and as the summer progresses, oxygen typically becomes **depleted** in the hypolimnion by the process of decomposition. Specifically, the loss of oxygen in the hypolimnion results primarily from the process of biological breakdown of organic matter (i.e.; biological organisms use oxygen to break down organic matter), both in the water column and particularly at the bottom of the lake where the water meets the sediment. When oxygen levels are depleted to less than 1 mg/L in the hypolimnion (as it was this season and in past seasons), the phosphorus that is normally bound up in the sediment may be rereleased into the water column (a process referred to as **internal phosphorus loading**).

This DES annual biologist visit has been conducted during **July** or **August** since **1999**. We recommend that the annual biologist visit for the 2006 sampling season be scheduled during **June** so that we can determine if oxygen is depleted in the hypolimnion *earlier* in the sampling season.

> Table 11: Turbidity

Table 11 (Appendix B) lists the current year and historical data for inlake and tributary turbidity. Turbidity in the water is caused by suspended matter, such as clay, silt, and algae. Water clarity is strongly influenced by turbidity. Please refer to the "Other Monitoring Parameters" section of this report for a more detailed explanation.

As discussed previously, the turbidity of the hypolimnion (lower layer) sample was *elevated* (8.86 NTUs) on the **August** sampling event.

In addition, the turbidity in the **Russell Inlet** sample was **slightly elevated** (3.86 NTUs) on the **June** sampling event which suggests that the stream bottom may have been disturbed while sampling or that erosion is occurring in this portion of the watershed.

When the stream bottom is disturbed, sediment, which typically contains attached phosphorus, is released into the water column. When collecting samples in the inlets, please be sure to sample where the stream is flowing and where the stream is deep enough to collect a "clean" sample.

If you suspect that erosion is occurring in this portion of the watershed, we recommend that your monitoring group conduct a stream survey and storm event sampling along this inlet. This additional sampling may allow us to determine what is causing the *elevated* levels of turbidity.

For a detailed explanation on how to conduct rain event sampling and stream surveys, please refer to the 2002 VLAP Annual Report "Special Topic Article" or contact the VLAP Coordinator.

> Table 12: Bacteria (E.coli)

Table 12 lists the current year and historical data for bacteria (E.coli) testing. (Please note that Table 12 now lists the maximum and minimum results for this season and for all past sampling seasons.) E. coli is a normal bacterium found in the large intestine of humans and other warm-blooded animals. E.coli is used as an indicator organism because it is easily cultured and its presence in the water, in defined amounts, indicates that sewage MAY be present. If sewage

is present in the water, potentially harmful disease-causing organisms **MAY** also be present.

The *E.coli* concentration was *low* (*less than* 10 counts per 100 mL) at **Station 01** and **Station 02** on the **August** sampling event.

If residents are concerned about sources of bacteria such as failing septic systems, animal waste, or waterfowl waste, it is best to conduct *E. coli* testing when the water table is high, when beach use is heavy, or immediately after rain events.

> Table 13: Chloride

The chloride ion (Cl-) is found naturally in some surfacewaters and groundwaters and in high concentrations in seawater. Research has shown that *elevated* chloride levels can be toxic to freshwater aquatic life. In order to protect freshwater aquatic life in New Hampshire, the state has adopted **acute and chronic** chloride criteria of **860 and 230 mg/L** respectively. The chloride content in New Hampshire lakes is naturally low, generally less than 2 mg/L in surface waters located in remote areas away from habitation. Higher values are generally associated with salted highways and, to a lesser extent, with septic inputs. Please refer to the "Chemical Monitoring Parameters" section of this report for a more detailed explanation.

The **epilimnion** and hypolimnion were sampled for chloride on the **August** comprehensive lake survey sampling event. The results were **18 mg/L** and **13 mg/L**, respectively, which is **much less than** the state acute and chronic chloride criteria. However, these results are **greater than** we would expect to measure in an undisturbed lake in New Hampshire.

We recommend that your monitoring group conduct chloride sampling in the epilimnion at the deep spot and in the tributaries near salted-roadways (especially **Russell Inlet**), particularly in the spring, soon after snow-melt and after rain events during the summer. This will establish a baseline of data which will assist your monitoring group and DES in determining lake quality trends in the future.

Please note that there will be an additional cost for each of the chloride samples and that these samples must be analyzed at the DES laboratory in Concord. In addition, it is best to conduct chloride sampling in the spring as the snow is melting and during rain events.

> Table 14: Current Year Biological and Chemical Raw Data

This table lists the most current sampling season results. Since the maximum, minimum, and annual mean values for each parameter are not shown on this table, this table displays the current year "raw" (meaning unprocessed) data. The results are sorted by station, depth zone (epilimnion, metalimnion, and hypolimnion) and parameter.

> Table 15: Station Table

As of the Spring of 2004, all historical and current year VLAP data are included in the DES Environmental Monitoring Database (EMD). To facilitate the transfer of VLAP data into the EMD, a new station identification system had to be developed. While volunteer monitoring groups can still use the sampling station names that they have used in the past (and are most familiar with), an EMD station name also exists for each VLAP sampling location. For each station sampled at your lake, Table 15 identifies what EMD station name corresponds to the station names you have used in the past and will continue to use in the future.

DATA QUALITY ASSURANCE AND CONTROL

Annual Assessment Audit:

During the annual visit to your lake, the biologist conducted a "Sampling Procedures Assessment Audit" for your monitoring group. Specifically, the biologist observed the performance of your monitoring group while sampling and filled out an assessment audit sheet to document the ability of the volunteer monitors to follow the proper field sampling procedures (as outlined in the VLAP Monitor's Field Manual). This assessment is used to identify any aspects of sample collection in which volunteer monitors fail to follow proper procedures, and also provides an opportunity for the biologist to retrain the volunteer monitors as necessary. This will ultimately ensure that the samples that the volunteer monitors collect are truly representative of actual lake and tributary conditions.

Overall, your monitoring group performed **very well** while collecting samples on the annual biologist visit this season! Specifically, the members of your monitoring group followed the majority of the proper field sampling procedures. The biologist did identify one aspect regarding sample collection that the volunteer monitors could improve upon, as follows:

Chlorophyll-a sampling (composite method): When collecting the chlorophyll-a sample using the composite method, please make sure to collect equal amounts (usually one Kemmerer bottle full) of water at each meter from **6 meters up to 1 meter** from the surface. Or, your group may want to convert to using the integrated sampler method which would be much quicker. For information on the integrated method, please contact the VLAP Coordinator.

Sample Receipt Checklist:

Each time your monitoring group dropped off samples at the laboratory this summer, the laboratory staff completed a sample receipt checklist to assess and document if the volunteer monitors followed proper sampling techniques when collecting the samples. The purpose of the sample receipt checklist is to minimize, and hopefully eliminate, future reoccurrences of improper sampling techniques.

Overall, the sample receipt checklist showed that your monitoring group did an *excellent* job when collecting samples and submitting them to the laboratory this season! Specifically, the members of your monitoring group followed the proper field sampling procedures and there was no need for the laboratory staff to contact your group with questions, and no samples were rejected for analysis.

USEFUL RESOURCES

Best Management Practices to Control Nonpoint Source Pollution: A Guide for Citizens and Town Officials, NHDES Booklet WD-03-42, (603) 271-2975.

Erosion Control for Construction in the Protected Shoreland Buffer Zone, NHDES Fact Sheet WD-SP-1, (603) 271-2975 or www.des.state.nh.us/factsheets/sp/sp-1.htm.

Impacts of Development Upon Stormwater Runoff, NHDES Fact Sheet WD-WQE-7, (603) 271-2975 or www.des.state.nh.us/factsheets/wqe/wqe-7.htm.

Low Impact Development Hydrologic Analysis. Manual prepared by Prince George's County, Maryland, Department of Environmental Resources. July 1999. To access this document, visit www.epa.gov/owow/nps/lid_hydr.pdf or call the EPA Water Resource Center at (202) 566-1736.